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Abstract

Butyrate arising from microbial fermentation is important for the energy metabolism and normal development of colonic epithelial cells
and has a mainly protective role in relation to colonic disease. While certain dietary substrates such as resistant starch appear to be
butyrogenic in the colon, it is not known to what extent these stimulate butyrate production directly, e.g. by promoting amylolytic species,
or indirectly, e.g. through cross-feeding of fermentation products. Cultural and molecular studies indicate that the most numerous
butyrate-producing bacteria found in human faeces are highly oxygen-sensitive anaerobes belonging to the Clostridial clusters IV and
XIVa. These include many previously undescribed species related to Eubacterium, Roseburia, Faecalibacterium and Coprococcus whose
distribution and metabolic characteristics are under investigation. A better understanding of the microbial ecology of colonic butyrate-
producing bacteria will help to explain the influence of diet upon butyrate supply, and to suggest new approaches for optimising microbial

activity in the large intestine.

© 2002 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

The anaerobic microbial communities of the mammali-
an large intestine and rumen produce the short chain fatty
acids (SCFA) acetate, propionate and butyrate as their
main non-gaseous fermentation end products. SCFA are
assimilated by the mammalian host, and provide a high
proportion of the total energy gained from the diet in
herbivores, especially ruminants. In humans the overall
contribution of SCFA towards the host’s energy require-
ment is far lower, but they have an important influence on
colonic health (reviewed [1,2]). In particular butyrate is the
preferred energy source for the colonic mucosa and has
been implicated in protection against colitis and colorectal
cancer [3-5]. Production of butyrate by mixed human fae-
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cal microflora in vitro is influenced by the growth sub-
strate with resistant starch, in particular, being regarded
as butyrogenic (reviewed [6,7]). The microbiological basis
for the effects of diet and individual variation upon gut
metabolism is, however, poorly understood, and this brief
review considers our current knowledge of the physiology,
identity and ecology of butyrate-producing bacteria from
the human large bowel.

2. Microbial fermentation, butyrate and gut health

Acetate, propionate and butyrate are all taken up by the
colonic mucosa, but butyrate is transported preferentially
and appears to be the preferred energy source for colono-
cytes [8,9]. Approximately 95% of the butyrate produced
by colonic bacteria is transported across the epithelium,
but concentrations in portal blood are usually undetect-
able as a result of rapid utilisation. In addition to its role
as a fuel, butyrate influences gene expression, primarily
through its action as a non-competitive inhibitor of his-
tone deacetylases, leading to hyperacetylation of chroma-
tin [10]. These effects are also elicited, but to a lesser ex-
tent, by other SCFA [10]. In addition, however, specific
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butyrate response elements have been identified [11]. Fur-
thermore, butyrate has anti-inflammatory effects that re-
sult from inhibition of activation of the transcription
factor NF-xB, and consequent reduced formation of
proinflammatory cytokines [12,13]. Recent microarray
analyses have revealed more precisely the extent of buty-
rate effects upon gene expression [14]. Depending on its
concentration, butyrate can inhibit growth or promote
differentiation of human cells in tissue culture, and can
induce apoptosis in tumour cells, while also acting as a
trophic factor for cells in intact tissues (reviewed [10]).

These interactions have important consequences for the
health of the colonic epithelium. The observation that bu-
tyrate promotes apoptosis and inhibits growth of cancer
cells in vitro [15] is consistent with a protective role against
colorectal cancer in vivo [16,17]. Cells in colon carcinomas
that overexpress cyclooxygenase 2 become resistant to bu-
tyrate-induced apoptosis, but butyrate is proposed to be a
factor in suppressing pre-cancerous cells at an earlier stage
in their progression [10]. Other studies support a role in
preventing and/or ameliorating conditions such as ulcer-
ative colitis [1,2,5,6,8]. It is proposed that an inadequate
supply of energy to colonocytes, 70% of which is normally
obtained from butyrate, can be a causative factor in coli-
tis. Thus dextran sulfate, which inhibits butyrate oxidation
without affecting glucose metabolism, induces colitis when
given orally to mice [18] and it has been proposed that
sulfide toxicity results largely from inhibition of the energy
supply to colonocytes from butyrate [19]. Excellent reviews
[5,6,10] critically discuss the evidence for and against the
view that low concentrations of SCFA, and of butyrate in
particular, increase the risks of both colorectal cancer and
inflammatory bowel diseases.

The question of what is an ‘optimal’ concentration of
butyrate is complex. Cells cultured in vitro show growth
arrest at concentrations (1-10 mM) lower than those seen
in faeces, but the relevant concentration in vivo is likely to
be that experienced by growing cells within the intact crypt
epithelium [10]. The supply of butyrate to the colonic ep-
ithelium depends largely on the fermentation of dietary
components that are incompletely digested in the small
intestine. Faecal concentrations are not a good guide to
production rates because a very high proportion of the
SCFA is taken up by the colonic mucosa. There is, how-
ever, substantial evidence to indicate that different dietary
polysaccharides affect the amounts and relative molar pro-
portions of SCFA in the gut of pigs, rodents and humans.
For example (see Fig. 1) in vitro studies with mixed hu-
man faecal bacteria suggest that starch fermentation yields
a higher molar proportion of butyric acid among the
SCFA products than pectin fermentation (reviewed [7]).
Resistant starch from the diet that escapes small intestinal
digestion is therefore likely to be butyrogenic [6,7] and
there is also some evidence (e.g. [17,20]) that fructo-oligo-
saccharides can be butyrogenic. Numerous studies have
been undertaken with animal models to explore the link

between the provision of ‘low digestible’ dietary carbohy-
drates, the supply of SCFA and protection against exper-
imentally induced tumours (e.g. [3,16,17]; reviews [1,2,5,
6,10]). Resistant starch appears to be more effective than
non-starch polysaccharides in dietary fibre in protecting
against colon cancer [6].

Direct supply of butyrate, or of butyrate ‘carriers’ such
as tributyrin, has been considered via oral [5,21] or rectal
enema [22] routes as a treatment for ulcerative colitis. Less
consideration seems to have been given to the possible use
of butyrate-producing bacteria as probiotics, but the tar-
geted stimulation of native butyrate-producing bacteria by
dietary prebiotics provides an obvious approach for deliv-
ering butyrate to its site of utilisation at the colonic mu-
cosa. Delivery to the distal large bowel is of particular
interest in view of the lower SCFA concentrations and
higher incidence of polyps in this region [3,5,23]. Inhibi-
tion of starch digestion in the small intestine enhances
butyrate production by delivering more starch to the large
intestine [24] while the presence of dietary components
such as wheat bran that affect transit [23] can shift the
main site of starch fermentation distally down the intes-
tine.

3. Butyrate-producing bacteria — diversity, phylogeny and
culturability

Extensive past surveys of the cultivable human intestinal
microflora [25,26] showed that the colon harbours signifi-
cant populations of genera, such as Clostridium, Eubacte-
rium and Fusobacterium that include butyrate-producing
species. The relationships of these bacteria are, however,
currently undergoing rapid revision in the light of infor-
mation from 16S rRNA sequencing (e.g. [27]). Further-
more, the ability to amplify and sequence ribosomal genes
directly from gut samples [28,29] has uncovered remark-
able diversity in the human colonic flora, much of which
appears to be distantly related to known species for which
ribosomal sequences are available. Thus it is by no means
certain that standard culturing techniques recover all bu-
tyrate producers from the human gut.

Recent work has combined molecular and cultural ap-
proaches to investigate the dominant butyrate-producing
bacteria of the human colon. Specific oligonucleotide
probes that recognise 11 known Eubacterium spp. detected
only low numbers in human faeces [30]. On the other
hand, 74 butyrate-producing isolates identified by sequenc-
ing and restriction fragment length polymorphism (RFLP)
analysis of 16S rRNA genes [31] were recently found to
include many new species, some of which, e.g. Roseburia
intestinalis [32], produce particularly high levels of buty-
rate in vitro (Fig. 2). Also prominent among strains that
produce > 10 mM butyrate in vitro were those related to
Fusobacterium prausnitzii, which has now been reclassified
as Faecalibacterium prausnitzii [33] in view of its lack of
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Fig. 1. Molar proportion of butyrate present among the SCFA products
of fermentation of starch and pectin by mixed human faecal bacteria in
vitro. Data are from a review by Cummings [7]: each point represents a
different published study (three of these studies, marked a, b and c, in-
cluded both substrates). The broken line indicates the mean butyrate
proportion for each substrate.

relatedness to true Fusobacterium species. Oligonucleotide
probing suggests that F. prausnitzii-related strains are
among the most abundant bacteria in human faeces [34].
As further probes are designed for different groups of
butyrate-producing bacteria, these will yield definitive in-
formation on their distribution and abundance in the hu-
man gut. Additional work on isolation and molecular phy-
logeny appears necessary in particular to recover non-
saccharolytic as well as saccharolytic species. Several bu-
tyrate-producing species have proved to require SCFA for
growth, emphasising the importance of the isolation me-
dium.

A phylogenetic tree based on 16S rRNA gene sequences
from Clostridium-related bacteria of gut origin is shown in
Fig. 3. It can be noted that butyrate-producing species of
Eubacterium, Roseburia and Clostridium are interspersed
with other genera such as Ruminococcus that are not
known to produce butyrate. In conclusion, although
most of the butyrate-producing bacteria so far cultured
from the human gut are related to the Clostridia, they
are widely distributed across several clusters defined by
16S rRNA analyses, including clusters I, IV, XIVa, XV
and XVI.

4. Anaerobic metabolism and butyrate synthesis

Butyrate is formed from two molecules of acetyl CoA
yielding acetoacetyl CoA, which is then converted, via the
intermediates L(+)-B-hydroxybutyryl CoA and crotonyl
CoA, to butyryl CoA [35]. Thereafter, butyryl CoA may

yield butyrate via butyrate kinase or via butyryl CoA:
acetate CoA transferase (Fig. 4). In the latter reaction,
first detected in a soil bacterium, Clostridium kluyveri, bu-
tyryl CoA is exchanged with exogenously derived acetate
to yield acetyl CoA and butyrate.

Butyryl CoA:acetate CoA transferase but not butyrate
kinase activity was detected in six Roseburia and F. praus-
nitzii strains studied from human faeces [36]. These strains
also showed net utilisation of acetate in the growth me-
dium, and acetate is a growth requirement for F. prausnit-
zii [33]. In C. kluyveri, which also has an absolute growth
requirement for acetate, it is thought that exogenously
supplied acetate may help in the disposal of reducing
equivalents [37]. A seventh, Coprococcus-related strain,
L2-50, that was a net acetate producer was found to pos-
sess both butyrate kinase and acetyl CoA transferase [36].
The significance of these metabolic differences has yet to
be established, but labelling studies (e.g. [38]) suggest that
significant amounts of free acetate contribute to carbon
in butyrate in mixed human faecal incubations. Other
fermentation products detected for butyrate-producing
strains include H,, CO,, formate and lactate, with p-lac-
tate being produced by F. prausnitzii strains and L-lactate
by other species examined [32,33,36].

Diez-Gonzalez et al. [39] distinguished two metabolic
types of Butyrivibrio fibrisolvens which is the major pro-
ducer of butyrate in the rumen. One group, represented by
the type strain D1 (ATCC 19171), expressed the enzyme
butyrate kinase, but apparently not butyryl CoA :acetate
CoA transferase. D1 produced little lactate and its growth
was not stimulated by acetate. Strains of the second group
(represented by NCDO 2223 in Fig. 3) possessed butyryl
CoA:acetate CoA transferase, but not butyrate kinase.
These strains converted 75% of the glucose supplied into
lactate in the absence of acetate, but when acetate was
added produced mainly butyrate. The two metabolic
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Fig. 2. In vitro butyrate production by 74 human faecal bacterial iso-
lates obtained from three individuals [31]. Identification of isolates was
by 16S rRNA gene sequencing and RFLP analysis.
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Fig. 3. Phylogenetic tree showing the inter-relationship of 16S rRNA sequences from butyrate- (red) and non-butyrate-producing bacteria (black). Boot-
strap values (expressed as percentages of 1000 replications) are shown at branch points: values of 96% or more were considered significant. The scale

bar represents genetic distance (10 substitutions per 100 nucleotides).

groups apparently correspond to two distinct phylogenetic
groups defined by 16S rRNA analyses [27] (Fig. 3). A
single human faecal strain of B. fibrisolvens 16/4 [31] ap-
pears to be related to the second group of rumen B. fibri-
solvens strains. Further studies should reveal how close the

parallels are between the metabolic behaviour of the hu-
man and ruminal butyrate producers.

There is very little information on the genetic determi-
nation and regulation of butyrate pathway enzymes in gut
bacteria. Most of the available information derives from
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Fig. 4. Schematic representation of pathways for carbohydrate fermentation in the large intestine. 1 = Methanogenesis, 2 = reductive acetogenesis, 3 = bu-

tyryl CoA:acetate CoA transferase, 4=phosphotransbutyrylase/butyrate kinase, 5=phosphotransacetylase/acetate kinase, 6=lactate dehydrogenase,

7 =acrylate pathway, 8 =succinate decarboxylation.

industrial interest in solventogenic clostridia, which have
the capacity to switch from butyrate production to the
formation of acetone and butanol during late exponential
growth [35]. In Clostridium acetobutylicum enzymes in-
volved in converting acetyl CoA to butyrate (Fig. 4) are
encoded by a gene cluster that also encodes flavoproteins
[40], and homologous genes have been identified in the
non-solventogenic gut pathogen Clostridium difficile [41].
Solvent formation is conferred by another gene cluster
(sol) that is plasmid encoded in C. acetobutylicum but
chromosomally encoded in Clostridium beijerinckii. A sep-
arate operon encodes phosphotransbutyrylase and buty-
rate kinase [42].

5. Factors affecting butyrate production in vivo

‘Butyrogenic’ substrates such as resistant starch may
affect the colonic fermentation in a number of ways.
Some may alter fermentative metabolism in individual
bacteria — e.g. more reduced substrates might tend to pro-
mote butyrate formation because of its role as a hydrogen
sink [35] (Fig. 4). On the other hand, most effects are
presumed to be the result of microbial population changes.
Thus there may be direct selection for increased popu-
lations of butyrate-producing species that are efficient
primary degraders of the substrate. In the case of resis-
tant starch, however, it is not yet clear whether the dom-
inant butyrate producers include active primary degraders.
Alternatively, certain butyrate producers may be able
to compete particularly well as scavengers of partially
degraded substrate (e.g. oligosaccharides) released by
primary degraders. Indirect stimulation of butyrate pro-
duction might also occur through increases in other fer-

mentation products such as acetate or (as suggested in
[43]) lactate that can act as precursors of butyrate. Finally
we must anticipate many more complex ‘system’ effects.
The fermentation balance of the colonic ecosystem will
be affected, for example, by redox potential, mucosal
transport rates, gut turnover and motility and certain sub-
strates may affect these variables, directly or indirectly. We
should also note that both endogenous and dietary sources
contribute to microbial fermentation in the large intestine,
and the fraction due to endogenous sources can be signifi-
cant on some diets [44]. The influence of host-derived sub-
strates on butyrate formation is largely unknown.

The species/strain composition of the faecal bacterial
flora varies between individuals, with some suggestion
from twin studies that it is influenced by host genetic/ma-
ternal factors [45]. Individual variation is also observed in
the relative proportions of SCFA formed on incubation of
various substrates with faecal inocula [46]. In general we
do not know to what extent inter-individual variation in
the colonic flora, as distinct from diet-induced changes,
influences the colonic fermentation, although variation in
the potential for methanogenesis is well established [44,46].
The possible impact of inter-individual variation in micro-
flora composition upon fermentation patterns is clearly a
key question with regard to possible pro-/prebiotic strat-
egies for optimising the fermentation balance.

6. Conclusions

It is sometimes tempting for the physiologist to treat the
colonic ecosystem as a ‘black box’ whose inputs and out-
puts alone are of interest. However, the composition and
behaviour of the colonic microbial community is of key
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importance. The colonic ecosystem is subject to shifts in
metabolism and species composition that can only be
understood by dissecting out the dominant microbial
groups and their interactions. Butyrate production is
widely distributed among anaerobic bacteria belonging
to the Clostridial subphylum. The Clostridial clusters
XIVa and IV in particular include some potentially impor-
tant butyrate producers related to Roseburia and F. praus-
nitzii, respectively that are abundant colonisers of the hu-
man gut. It is far from clear whether the full range of
diversity has yet been cultured, or to what extent different
species and functional groups vary in their distribution
between individuals, and in their responses to alternative
dietary substrates. A wider range of species-specific probes,
allied to metabolic studies, will help to answer such ques-
tions. Further studies on newly described butyrate-produc-
ing bacteria from the human colon will help to unravel the
effects of diet upon health, including microbial interac-
tions with the immune system, and will help in the design
of prebiotic or probiotic strategies for stimulating sub-op-
timal butyrate synthesis in the large intestine.

Note added in proof

Recent evidence indicates activation of the cytokine IL-18
in response to butyrate in human carcinoma-derived cell
lines [Kalina, U. et al. (2002) Eur. J. Immunol. 32, 2635-
2643]. It should be stressed that the effects of butyrate
upon inflammation are complex, and the full picture is still
emerging.
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